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Abstract

In this paper, we develop the locally divergence-free discontinuous Galerkin method for numerically solving the
Maxwell equations. The distinctive feature of the method is the use of approximate solutions that are exactly diver-
gence-free inside each element. As a consequence, this method has a smaller computational cost than that of the dis-
continuous Galerkin method with standard piecewise polynomial spaces. We show that, in spite of this fact, it produces
approximations of the same accuracy. We also show that this method is more efficient than the discontinuous Galerkin
method using globally divergence-free piecewise polynomial bases. Finally, a post-processing technique is used to re-
cover (2k 4 1)th order of accuracy when piecewise polynomials of degree k are used.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

There are many partial differential equations with solutions which are divergence-free. Examples include
the incompressible Euler and Navier-Stokes equations, the magnetohydrodynamics equations, and the
Maxwell equations. For some of the problems, such as the incompressible Euler and Navier—Stokes
equations, the divergence-free condition is an explicit part of the equations. For some others, such as the
magnetohydrodynamics equations and the Maxwell equations, the solutions of the PDE should auto-
matically satisfy the divergence-free condition if the initial data is divergence-free, but it is usually a
challenge to have the numerical solutions also satisfy this divergence-free condition (exactly or very
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accurately). There is an extensive literature on designing such numerical methods, for example, we could
refer to [18] for the incompressible Euler and Navier—Stokes equations, [3] for the magnetohydrodynamics
equations, and [19] for the Maxwell equations, among many others. It is well known that negligence in
dealing with the divergence-free condition numerically can lead to serious defects, see, e.g. [16,20].

In this paper, we develop the locally divergence-free discontinuous Galerkin methods equipped with
TVD Runge-Kutta time discretization (RKDG) [8,11,13] for solving two-dimensional Maxwell equations,
as our starting point to explore the effective treatment of the divergence-free condition with discontinuous
Galerkin methods. The same technique can be generalized to three dimensions.

The discontinuous Galerkin method is a class of finite element methods using completely discontinuous
piecewise polynomial space for the numerical solution and the test functions. One would need to use more
degrees of freedom for the same order of accuracy, comparing with continuous finite element methods,
however, the discontinuities at the element interfaces allow the design of suitable inter-element boundary
treatments (the so-called numerical fluxes) to obtain highly accurate and stable methods in many difficult
situations. The discontinuous Galerkin method has become very popular in recent years for solving con-
vection dominated problems. It has several distinct advantages. We refer to the lecture notes [7], the survey
paper [9] and other papers in that Springer volume, and the review paper [13] for details and history of the
discontinuous Galerkin method.

Electromagnetism is one application area of the discontinuous Galerkin method, among many other
areas. In [15], the discontinuous Galerkin method with the standard piecewise polynomial spaces is used to
solve Maxwell equations on unstructured meshes.The divergence-free condition is not explicitly enforced
and is left to the accuracy of the solver. One can expect, and does observe, global divergence errors which
are kth order small when piecewise polynomials of degree £ are used.

Attempts have been made in the literature to enforce explicitly the divergence-free condition. The
staggered mesh magnetic field transport algorithm was first proposed by Yee [22] for the transport of
electromagnetic fields, with the idea of applying a staggered grid to maintain the divergence-free condition.
Another approach is to modify the PDE by using Lagrange multipliers. In [19], Munz et al. established the
generalized Lagrange multiplier approach. They rewrote the constrained formulation of the Maxwell
equations by adding a coupling term into Gauss’s law that resulted in a purely hyperbolic model system.

Classical finite element methods for solving Maxwell equations can be found in, e.g. [1,16]. Baker and co-
workers [2,18] introduced a discontinuous Galerkin method for solving the Stokes equations and the
stationary Navier—Stokes equations. They used an interior penalty method with locally divergence-free
approximate solutions. Optimal error estimates were proven.

We follow the approach of Baker and co-workers [2,18] and use the locally divergence-free polynomials
as trial space in the discontinuous Galerkin method to solve Maxwell equations. Note that although the
resulting approximations are divergence-free inside each element, they are not globally divergence-free since
their normal component across element interfaces are not necessarily continuous. We measure such di-
vergence errors at the final time for a time dependent calculation and demonstrate numerically that they are
kth order small when piecewise polynomials of degree £ are used. We then show that if we project the
approximate solution at the final time into the space of globally divergence-free piecewise polynomials, the
result remains (k + 1)th order accurate in the L?- and L>-norms; in fact it is even more accurate than before
the projection. Finally, we show that the discontinuous Galerkin method using locally divergence-free bases
is in general no worse than the more costly discontinuous Galerkin method with globally divergence-free
piecewise polynomial bases.

A post-processing technique [10,21] is also applied to the numerical solutions of discontinuous Galerkin
methods using locally divergence-free polynomial bases, with or without the projection at the end, as well as
the one using the globally divergence-free polynomial bases. In all these cases the accuracy is enhanced
from (k + 1)th order to (2k + 1)th order when P* elements are used, indicating that a higher order of ac-
curacy in negative-order norms is retained by all these methods.
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The paper is organized as follows. In Section 2, we introduce the locally divergence-free space and the
numerical formulation of the algorithm. In the same section, a way to measure the divergence of a piecewise
smooth function is also described, and the L>-projection is defined from the space of locally divergence-free
discontinuous piecewise polynomials to a subspace which contains the globally divergence-free piecewise
polynomials. We also present a theoretical result of L2-stability as well as error estimates in Section 2.
Section 3 contains numerical results to demonstrate the accuracy of the algorithm and the projection.
Concluding remarks are given in Section 4. In Appendix A we collect some details related to the imple-
mentation of the L>-projection from the locally divergence-free piecewise polynomial spaces to the globally
divergence-free piecewise polynomial spaces, introduced in Section 2.

2. Locally divergence-free discontinuous Galerkin method

The following two-dimensional linear Maxwell equations will be considered:

OH,  OE, 0H, OE. OE. 0H, OH,

oy a w w & oy

(2.1)

This is a hyperbolic system with a divergence-free solution (H,, H,) for all time if initially it is divergence-
free. The standard RKDG method for solving (2.1) would start with a triangulation 7, of the domain £,
with the element being denoted by K, the edge by e, # = ming{the radius of the largest circle within K},
and the outward unit normal by n = (n;, ;). The collections of all the elements and edges are denoted by 4
and &, respectively. The solution space, which is the same as the test space, is given by

Vi=Vi={v:v[ e P*K), Kex} =Vl @{v:v|, € PK), Kecx}, (2.2)

where P¥(K) = (P*(K )_)3, and P*(K) denotes the space of polynomials in K of degree at most k. We write the

approximation space Vlzlo for (H., H,) separately from that for E. as we would like to replace the space V, in
(2.2) by

. dv;  Ov
V,=Vi= {vevﬁz (a—x‘+a—;)
That is, the vector (v, v,) is a locally divergence-free polynomial vector. Notice that the dimension of V¥ ;|
is (k +1)(k +4)/2, only about half as that of the dimension of V} |, which is (k + 1)(k + 2). We can thus
save a lot of computational cost by using the locally divergence-free space (2.3) instead of the standard
piecewise polynomial space (2.2). It is very easy to write out a local basis for V’;;_0| - For example, if K is a
rectangle, with center (x;,);) and width Ax;, Ay;, if we denote '

X —X; Y:y_yj
Ax; Ay, '

_ o} —VE @ {0: ol € PK), K € ). (23)
K

X =

one set of bases of V;O| x would be, when k =1,

() (55) () () ()

For k = 2, we need to add

Ax,(12X% — 1) —24AxXY 1272 - 1 0
—2uApXY T\ Ap(1277 1) ) 0 o\ —1 )
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And, by adding the following five more polynomial pairs, we get the bases for £k = 3

Ax,(4X3 — X) Ax,(12X* - 1)Y —AX(127% - 1)
Ay -0y |\ —Apxerr -1y ) Ay, (47° - 7)

2073 — 37 0
0 ©o\20x3—3x )

In general, we can obtain bases for V’h‘,o| « by taking the curl of bases of PF1(K).
We rewrite Eq. (2.1) in the conservative form

u+V-f(u) =0, (24)

where u = (H, H,, E.)". Following the usual definition of discontinuous Galerkin methods for conservation
laws, e.g. [8,11], we obtain the RKDG formulation for (2.4): find u, € Vy, such that

/uht cvdx + Z h(u" ™ u™® n) . vds — / f(u) - Vvdx =0 Vv €V, (2.5)
K K

ecOK v ¢

where h(u™®) u(X) n) is taken as the upwinding flux consistent with f(u) - n

h(u™® ¢ &) 0y = | —n(E. - % [H] +%[H)]) |. (2.6)
I’lzﬁx — I’llﬁy — %
Here
. Uim(K) ; Uext(K) 7 [U] Uext(K) Uim(K)

and v &) are the limits of v at interface e from the interior and exterior of K respectively. The
upwinding flux is obtained by diagonalizing the system in the normal direction of the cell boundary, taking
the upwinding flux in each characteristic variables, and then coming back to the original variables, which is
a standard technique in the computation of hyperbolic systems. An alternative choice of the numerical flux
is the Lax—Friedrichs flux

m(E: — % [Hd + 3 [Hy]) — 5 (ni[H] + mna[Hy])

h(u ) ®) ) = | —m(E. — 3 [H] + % [H)]) - S (mm[H] + n3[H)]) |. (2.7)
I’lex — 111]:], — [b;z]

This flux has more control on the jumps of the normal velocity across element interfaces, see Proposition
2.1, and hence may show an advantage in some calculations, see, for example, the control on numerical
divergence errors for the example with a singular solution in Section 3.5.
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2.1. A way to measure the divergence

Although a locally divergence-free space is used, the approximation to (H,, H,) does have errors in its
divergence given by the jumps in the normal direction across element interfaces. Thus a computable
measurement of the global divergence needs to be defined.

One way is to use the H~! norm of the divergence of the function. Unfortunately, it is very difficult to
compute the H~! norm of a function. Measurements equivalent to the H~' norm can be computed, for
example in [4], where a procedure to compute such a measurement is described through solving a Laplace
equation with the multi-grid method.

Here, we introduce a simpler measurement. For a vector function u which is smooth within each element
K € 7, the following semi-norm is defined:

Mol =3 [ - nds + 3 /K|V~u|dx.

ecs V€ Kex

We argue that || - |[,, is a norm of the divergence of u. Notice that, for a given piecewise smooth
function, if its divergence in each element is zero, then it is globally divergence-free if and only if the normal
component of the function across each interface e is continuous. Hence in order to measure the global
divergence of a function, the jump of the normal component of the function across those edges needs to be
considered.

We can easily check that the two terms in the definition of || - ||, , are on the same scale. If we write out
the definition of the #~' norm of the divergence of a function,

(u, V)
el

where ¢ goes through all the smooth functions on Q with compact support and replace the H' norm || - ||,
used in denominator by the L> norm, we will get

(u,V(,b)_ 1 ( . B ' )
Pl ‘S‘ipwnm{,;% [ wmoas— [ 9 -upax }g'“'*-ﬁ'

One can prove that it is actually an equality by using in particular a sequence {¢,,} which approximates

o) = { sign(V - u(x)) Vx € K,

sign(u(x’) - ng|vex +u(X) ngliw YVx€e=KNK',

X —X X —X

where ng is the outward unit normal on edge e for element K. We thus end up with our definition of |[ - [[, .

2.2. An L’-projection

Even if we use the locally divergence-free space, the numerical solution is still not globally divergence-
free because of the discontinuities of the normal component across element interfaces. Here, we introduce
the L?>-projection from the locally divergence-free piecewise polynomial space to its globally divergence-free
subspace.

The original idea of the projection is borrowed from [5], only the bases and definition are modified to
meet our need. To simplify the discussion, we consider only rectangular elements. Arbitrary triangular
elements can also be treated in a similar fashion. Similar to [5], we first augment (P*(K))?, the polynomial

space with degree at most k, by span(curl(x*1y), curl(x)**!)), a two-dimensional subspace of (P**!(K))’.
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We introduce the notations

Wi = W]Z,o = {u = (u,v) : u|K € V];,O(K) U {(D,“ lPk}}a
W, =W, =W, @ {v:v], € PXK), Ke X},
W, =W ={ueW :V.uer?},

where @, P, € V’;Bl (K) \ V}(K) and & contains the term X**', ¥, contains the term Y**'. For ex-
ample,

o — [ Aa(12¥ = 1) g _ [ —24AxXY
P —2aapxy ) T T LAy (1272 1) )

o [ Au(X -X) g, _ [ —AxX(127% 1)
T\ A2 -y )0 T\ Ay@drr-v) )

and

0. — [ Ax(80X* —24X° 11 [ —16Ax;(207° — 37)X
P\ —16Ay20° —3x)Y )0 TP T\ Ay(80Y* — 2472 1) )

Notice that a function u € W, also belongs to W,, if and only if u-n, the normal component of u, is
continuous across the interfaces e of 7 . .

The projection IT, = IT; we will use here is the L>-projection onto W}. It is not surprising to see this is a
global projection, since the divergence-free condition is a global property.

In Appendix A we will collect some details related to the implementation of this projection. Basically, we
choose the normal component along each e as degrees of freedom to guarantee its continuity.
2.3. L?-stability and an error estimate

We present in this section the theoretical results of the L?-stability and an error estimate.

Proposition 2.1 (L2-stability). Let w, = (Hy, H,,,E.)) be the solution of (2.5) with the upwinding flux (2.6).
Then,

/Q(Hx‘h(x, 0* + H,5(x, 1) + E.(x,0)?) dx + /0 { Z /(nz[HX,h] —n [Hyﬁh])z + [E..) ds} dr
_ / (Ho(x,0)% + H, 1(x, 0)2 + E.5(x,0)%) dx.

For the solution w, = (H,;, H,, E.;) of (2.5) with the Lax—Friedrichs flux (2.7), we have
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/Q (Hoa (%, 0 4 Hy (%, 0 + Eo(x,1)%) dx + / {Z [ nlHa) = m{F)Y + o]+ sl )

+ [E.a) ds} dt = /(Hx,h(x, 0)” + Hyu(x,0)” + E.(x,0)%) dx.
o

Proof. The techniques used are now standard for proving the L’-stability of semidiscrete DG, see, e.g.
[12,17]. In particular, the proof of this proposition follows the same lines as that for proving the cell entropy
inequality in [17], by taking the test functions v = u, in (2.5), working through the integrals, and grouping
the boundary terms using the specific forms of the upwinding or the Lax—Friedrichs fluxes. We omit the
details. 0O

Notice that, when the upwinding flux is used, we have a control only on the jumps of the tangential
velocity across element interfaces, but we have a control on the jumps of both the tangential and the
normal velocity across element interfaces when the Lax—Friedrichs flux is used. Since the only numerical
divergence errors are contained in the jumps of the normal velocity across element interfaces, such a
stronger control when the Lax—Friedrichs flux is used may be beneficiary in certain situations, such as the
situation when local divergence is concentrated near the singularity of the solution, see the example in
Section 3.5.

Proposition 2.2 (Error estimate). Let u= (H, H,,E.) be the smooth exact solution of (2.1), and
w, = (Hj, Hyp,E. ;) the solution of (2.5) and (2.6) or (2.5~2.7) in Vi or WE. Then,

[lu = willy < Clfull, A2

Proof. Again, the techniques used are now standard for proving error estimates of semidiscrete DG, given a
cell entropy inequality or an L2-stability, see, e.g. [12]. In particular, the proof of this proposition follows
the same lines as that for proving Theorem 2.2 in [12]. We omit the details but mention that for the error
estimate, we also need the approximation results from the following Lemma 2.3. O

Lemma 2.3 (Approximation results). Let v be a H*™! function defined on K satisfying V - v = 0, and let v;, be
its L*-projection into Vi, |, (or W ). Then

o — Uh||0J< < CH! |U|k+u<v
o — Uh||04,a1< < Chk+l/2|v‘k+1,1<-

The first part in Lemma 2.3 is a direct consequence of the approximation result in [2]: under the same
condition on v, there is a function w, € V];,0| x> such that

[lo—wall;x < Chk+lfl|v|k+1,1<7 0<I<k+1.

Certainly, the L2-error for the L2-projection v, will not be larger than that for w;,. The second inequality is a
simple application of the Bramble—Hilbert lemma (see [6]).
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Proposition 2.4 (Error estimate when the global projection is used at the end of computation). If
u=(H,H,E.) = (w,E,) is the smooth exact solution, w, = (H;,H,;,E.;) = (W0, E.,) is the solution of
(2.5) and (2.6) or (2.5-2.7) with the underlying space V,= V'; or W,=W- and

he
Vi = ((Hep, Hyp), Ez ) = (I (Ano), E- ) =: Py(wy,), where I, = Hﬁ is the L2-projection onto the globally
divergence-free subspace, then we have

|Ju— Vh||o < Cllu ‘k+1hk+l/2-

Proof. First,
[Ju—vil[p = [[u = Py(w,) [ < [Ju = Py(a)]o + [[Pu(u) = Py(w,)[ < [Ju—Py(a) ]y + [[u— s,

the last inequality is because P, is an L>-projection, hence it would not increase the L>-norm. By Proposition
2.2, we have

[l — [ < C||“||k+1hk+1/2~
On the other hand, we claim that
[lu = Pyuf|, < CH“”kﬂthv

this is because we could use the projection introduced in [5], which already yields an error bound of A**!,
and the L2-projection P, would have a smaller error than any other projection. 0O

3. Numerical examples

Notice that the Maxwell equation (2.1) admit the following exact solution:

Hx _:B
il = 2 |rcoswl+ar+p), (1)
E, 1

where f is an arbitrary function, «, f, w are constants, and o2 + > = 1.
In this section, we show representative examples of the computational results obtained with the fol-
lowing two functions f in (3.1):

flw) =e", (3.2)
which is smooth, and
ooy wlog|w| if w#0,
Sw) = {0 if w =0, (33)

which has a singularity at w = 0 (but is still continuous there). We will call them the smooth solution and
the singular solution respectively in the following examples. The computational domain is always taken as

21 21
2= [Om} . [O’m]

and the periodic boundary condition is used. We take w = 1, « = cos(0.3n) and f = sin(0.37) as well as the
final time ¢ = 14 in the numerical experiments, unless otherwise stated.
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We use both the uniform and non-uniform (randomly perturbed from a uniform mesh up to 10%)
rectangular meshes and the linear strong stability preserving (SSP) Runge-Kutta time discretization [14] of
order comparable to the spatial accuracy. In most of the examples we will use the upwinding flux (2.6). The
results using the Lax—Friedrichs flux (2.7) are similar for most cases. In the singular solution case, Section
3.5, we will show results using both fluxes.

3.1. Comparison of RKDG methods using locally divergence-free P* and standard P* bases

We first compare the results obtained with the P¥ RKDG method using the locally divergence-free bases
with those using the usual polynomial bases. Note that the number of degrees of freedom per element for
the first method is ((k+1)(k+2)/2)+ ((k+1)(k+4)/2) whereas for the second is
((k+1)(k+2)/2) + (k+ 1)(k +2). This means that, as k increases, the ratio of the complexity of these
methods per time step and per element, namely,

<S(k+l)(1<+2) )2
)

2
( (k+l)2(k+2) i (k+1)2(k+4) )

re(k) =

tends to 9/4. This means that as k increases, the method using locally divergence-free basis is more than
twice faster for the same mesh. In Table 1, we display, for several values of the polynomial degree &, the
ratio of the complexity of the methods, rc(k). We remark, however, that this is based solely on the reduction
of degrees of freedom and does not take into account special structures of the bases, e.g., tensor product
type bases for the p-version, for which the actual savings in cost may be less.

The results for the smooth solution on non-uniform meshes are shown in Tables 2 and 3. From Table 2
we can see that the standard P* and locally divergence-free P* both have the same convergence order and
almost the same magnitudes of L? and L™ errors on the same mesh. The errors in E, are not listed since both
test spaces give almost the same results.

Besides the saving of computational cost, another advantage of using the locally divergence-free bases
can be observed in the reduction of global divergence errors in Table 3. Although the global divergence
errors are still of order &, the magnitude is reduced in all cases comparing with the results using the usual
polynomial spaces.

3.2. The effect of the projection to globally divergence-free subspaces at the end of the calculation

In this section, we would like to see the effect on the accuracy of the numerical solution of a single
application of the projection into the subspace of globally divergence-free functions at the very end of the
calculation. This can be considered to be a cosmetic post-processing step whose purpose is to provide a
globally divergence-free numerical solution which is sometimes desired in applications.

We look again at the case of the smooth solution on non-uniform meshes. We first use V} as the trial
space for the RKDG, then at the very end of the computation, the H component of the numerical solution
is projected to the augmented space W',j

Table 1
Ratio of the complexities per time step per element of the RKDG methods
k 1 2 3 4 5 6 7 8 9 10

re(k) 1.27 1.44 1.56 1.65 1.72 1.77 1.82 1.86 1.89 1.92
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Table 2
L? and L™ errors in H
Mesh Pf Locally divergence-free P*
L? error Order L> error Order L*-error Order L> error Order
Pl
20 x 20 7.41E -02 1.85E-01 7.41E-02 1.81E-01
40 x 40 1.63E - 02 2.19 4.54E-02 2.02 1.63E-02 2.19 4.48E - 02 2.01
80 x 80 3.46E-03 2.23 1.07E-02 2.09 3.46E -03 223 1.07E - 02 2.07
160 x 160 8.12E-04 2.09 2.72E-03 1.98 8.12E-04 2.09 2.70E-03 1.98
320 x 320 1.98E - 04 2.04 6.98E - 04 1.96 1.98E - 04 2.04 6.92E - 04 1.96
PZ
10 x 10 3.75E-02 9.40E - 02 3.87E-02 9.32E-02
20 x 20 3.15E-03 3.58 1.53E-02 2.62 3.18E-03 3.61 1.90E - 02 2.29
40 x 40 2.54E - 04 3.63 242E-03 2.66 2.47E-04 3.69 2.94E-03 2.69
80 x 80 2.85E-05 3.16 2.96E — 04 3.03 2.69E - 05 3.20 3.75E-04 2.97
160 x 160 3.58E-06 2.99 3.75E-05 2.98 3.27E-06 3.04 4.66E — 05 3.01
P3
10 x 10 3.94E -03 2.81E-02 4.03E-03 3.08E-02
20 x 20 1.45E-04 4.77 2.67TE-03 3.40 1.40E - 04 4.85 2.99E-03 3.37
40 x 40 8.83E-06 4.04 1.89E - 04 3.82 8.43E-06 4.05 2.17E-04 3.78
80 x 80 5.58E-07 3.98 1.31E-05 3.85 5.29E-07 4.00 1.51E-05 3.84
160 x 160 3.54E -08 3.98 8.01E-07 4.03 3.31E-08 4.00 9.40E - 07 4.01
Table 3
Errors in the divergence of H, V- H
Mesh Pf Locally divergence-free P*
[| -], error Order [| -], , error Order
Pl
20 x 20 8.92E-00 7.65E - 00
40 x 40 4.76E - 00 091 4.04E-00 0.92
80 x 80 2.42E-00 0.98 2.07E-00 0.96
160 x 160 1.28E-00 0.92 1.10E-00 0.91
320 x 320 6.85E-01 0.90 5.86E-01 0.91
PZ
10 x 10 4.78E-00 2.20E-00
20 x 20 1.55E-00 1.63 6.50E - 01 1.76
40 x 40 4.12E-01 1.91 1.65E - 01 1.97
80 x 80 1.08E-01 1.94 4.14E-02 2.00
160 x 160 2.86E - 02 1.91 1.03E-02 2.00
P}
10 x 10 8.88E-01 3.57E-01
20 x 20 1.38E-01 2.69 4.56E — 02 2.97
40 x 40 1.81E-02 293 5.30E-03 3.10
80 x 80 2.38E-03 2.93 6.40E - 04 3.05
160 x 160 3.25E-04 2.87 7.92E-05 3.01

It turns out that the projection is a very good “post-processor”, see Table 4, in the sense that it
improves the numerical solution in two ways: it eliminates the divergence error in the numerical solution,
which is expected as the projection is designed for this purpose, and it reduces the L? and L> errors for
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Table 4

L? and L™ errors in H
Mesh Locally divergence-free Projection onto augmented space

L? error Order L™ error Order L? error Order L> error Order

Pl
10 x 10 2.28E-01 5.20E-01 2.26E-01 5.02E-01
20 x 20 7.41E-02 1.62 1.81E-01 1.52 7.32E-02 1.62 1.69E - 01 1.57
40 x 40 1.63E-02 2.19 4.48E-02 2.01 1.59E - 02 2.20 3.96E-02 2.09
80 x 80 3.46E - 03 2.23 1.07E-02 2.07 3.34E-03 2.25 8.13E-03 2.28
160 x 160 8.12E-04 2.09 2.70E - 03 1.98 7.77E - 04 2.11 1.93E-03 2.08
PZ
10 x 10 3.87E-02 9.32E-02 3.83E-02 9.17E-02
20 x 20 3.18E-03 3.61 1.90E - 02 2.29 2.94E-03 3.70 9.39E-03 3.29
40 x 40 247E-04 3.69 2.94E-03 2.69 1.82E—-04 4.01 1.11E-03 3.08
80 x 80 2.69E - 05 3.20 3.75E-04 2.97 1.65E—-05 3.46 1.34E-04 3.04
160 x 160 3.27E-06 3.04 4.66E - 05 3.01 1.90E - 06 3.12 1.73E-05 2.96
P3
10 x 10 4.03E-03 3.08E-02 4.01E-03 1.86E - 02
20 x 20 1.40E - 04 4.85 2.99E - 03 3.37 1.31E-04 4.94 1.40E - 03 3.73
40 x 40 8.43E-06 4.05 2.17E-04 3.78 8.08E - 06 4.02 1.02E-04 3.78
80 x 80 5.29E-07 4.00 1.51E-05 3.84 5.14E-07 3.97 6.79E — 06 391
160 x 160 3.31E-08 4.00 9.40E - 07 4.01 3.23E-08 3.99 4.28E-07 3.99

the numerical solution, which is not necessarily expected. Indeed, since we are projecting into a subspace,
a degradation of the quality of the approximation can be expected. However, the fact that this projection
eliminates the error in the divergence and simultaneously reduces the L? and L™ errors indicates that the
original numerical solution by the RKDG method with locally divergence-free polynomials is already
highly accurate both in the usual L? and L errors and in the divergence error. The projection cannot
render the solution more accurate if the information is not already there hidden in the numerical
solution.

3.3. Comparison of locally and globally divergence-free RKDG methods

In this section, we compare the results obtained from three RKDG methods, namely, the one using the
locally divergence-free polynomial bases, the one using the locally divergence-free polynomial bases with a
projection into the globally divergence-free space at the end of the computations, and the one using the
globally divergence-free polynomial bases.

The last method is implemented by starting from a globally divergence-free numerical initial condition,
advancing in an inner stage of the Runge-Kutta method by the DG procedure, then projecting back to the
globally divergence-free space. This is clearly equivalent to working on the RKDG method using the
globally divergence-free piecewise polynomial space, which is in H(div). Note that to carry out the pro-
jection into the globally divergence-free space, we must numerically solve a large sparse linear system. For
this reason, this method is computationally quite costly. We do not advocate it as a practical numerical
method; we include it here mainly for the purpose of comparison.

Again we use the case of the smooth solution on non-uniform meshes. The trial space in the RKDG is
now taken as W],j in order to be able to implement the global projection at every Runge-Kutta inner stage.

From Tables 5 and 6, we can see that if we use the projection at the end of the RKDG, then both the L?
and L>™ errors of H are reduced from the one before the projection. This is consistent with what we have
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L?-errors in H (“LDF + No Pro, LDF + Final Pro, GDF” stand for: RKDG using locally divergence-free polynomial bases, using
locally divergence-free polynomial bases with projection at the end, and using globally divergence-free polynomial bases)

Mesh LDF + No Pro LDF + Final Pro GDF
L? error Order L? error Order L? error Order
Pl
10 x 10 2.33E-01 2.32E-01 2.29E-01
20 x 20 7.21E-02 1.69 7.19E-02 1.69 7.03E-02 1.70
40 x 40 1.52E-02 2.24 1.52E-02 2.25 1.51E-02 2.22
80 x 80 3.27E-03 2.22 3.25E-03 2.22 3.25E-03 2.21
160 x 160 7.74E - 04 2.08 7.69E — 04 2.08 7.68E — 04 2.08
PZ
10 x 10 3.35E-02 3.32E-02 3.94E-02
20 x 20 2.77E-03 3.60 2.54E-03 3.71 2.19E-03 4.17
40 x 40 2.28E-04 3.61 1.69E - 04 391 1.46E - 04 391
80 x 80 2.54E-05 3.17 1.62E-05 3.38 1.55E-05 3.23
P3
10 x 10 3.94E-03 3.78E-03 5.35E-03
20 x 20 1.68E — 04 4.55 1.32E-04 4.84 1.23E-04 5.45
40 x 40 1.0SE-05 4.00 8.18E-06 4.01 7.89E - 06 3.96
80 x 80 6.62E — 07 3.99 5.16E—-07 3.99 5.11E-07 3.95
Table 6
L>®-errors in H
Mesh LDF + No Pro LDF + Final Pro GDF
L> error Order L™ error Order L™ error Order
Pl
10 x 10 4.97E-01 4.88E-01 4.79E-01
20 x 20 1.66E — 01 1.58 1.59E-01 1.62 1.57E-01 1.61
40 x 40 4.02E-02 2.05 3.68E-02 2.11 3.66E — 02 2.10
80 x 80 8.57TE-03 2.23 7.76E - 03 2.25 7.76E - 03 2.24
160 x 160 2.12E-03 2.02 1.91E-03 2.02 1.91E-03 2.02
PZ
10 x 10 8.49E - 02 7.96E - 02 9.75E-02
20 x 20 1.41E-02 2.59 8.73E-03 3.19 9.32E-03 3.39
40 x 40 2.14E-03 2.72 1.04E-03 3.07 1.01E-03 3.20
80 x 80 2.69E - 04 2.99 1.28E-04 3.02 1.33E-04 2.93
P}
10 x 10 3.01E-02 1.90E - 02 2.28E-02
20 x 20 2.92E-03 3.36 1.44E-03 3.73 1.27E-03 4.17
40 x 40 2.08E—-04 3.81 1.02E-04 3.82 9.45E-05 3.75
80 x 80 1.39E - 05 3.90 6.67E - 06 3.93 6.59E — 06 3.84

observed in the previous subsection, in fact the only difference here is that the trial space for the RKDG is
slightly larger. If we compare the results using the projection at the end of computation and results using
the globally divergence-free polynomial space (remember both of them give globally divergence-free
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Table 7

L? and L*™ errors in E.
Mesh LDF + No Pro/Final Pro GDF

L*error Order L> error Order L*error Order L*> error Order

Pl
10 x 10 241E-01 5.17E-01 2.38E-01 5.08E-01
20 x 20 7.31E-02 1.72 1.76E-01 1.55 7.16E—02 1.73 1.74E-01 1.54
40 x 40 1.55E-02 2.24 4.18E-02 2.08 1.54E-02 2.22 4.17E-02 2.06
80 x 80 3.32E-03 2.22 9.72E-03 2.11 3.32E-03 2.21 9.69E-03 2.11
160 x 160 7.84E - 04 2.08 2.72E-03 1.84 7.83E-04 2.08 2.72E-03 1.83
PZ
10 x 10 3.27E-02 8.01E-02 3.97E-02 9.92E-02
20 x 20 2.57TE-03 3.67 1.13E-02 2.83 2.28E—03 4.12 1.25E-02 2.99
40 x 40 1.83E-04 3.81 1.72E-03 2.72 1.68E — 04 3.76 1.89E - 03 2.72
80 x 80 1.88E-05 3.28 2.15E-04 3.00 1.89E-05 3.15 2.46E - 04 2.95
P3
10 x 10 3.53E-03 1.90E - 02 5.44E - 03 2.60E - 02
20 x 20 9.19E-05 5.27 1.76E-03 343 1.39E - 04 5.29 2.06E-03 3.66
40 x 40 5.12E-06 4.17 1.24E-04 3.82 1.00E - 05 3.79 1.66E — 04 3.63
80 x 80 3.18E-07 4.01 8.78E - 06 3.82 6.89E - 07 3.85 1.18E-05 3.81

Table 8

L? and L™ errors in H with LDF + No Pro
Mesh Before post-processing After post-processing

L? error Order L™ error Order L? error Order L> error Order

Pl
10 x 10 2.03E-01 4.71E-01 2.02E-01 441E-01
20 x 20 5.74E - 02 1.82 1.49E-01 1.66 5.69E - 02 1.83 1.31E-01 1.75
40 x 40 9.83E-03 2.55 3.01E-02 2.30 9.55E-03 2.58 2.38E-02 2.45
80 x 80 1.43E-03 2.79 S5.13E-03 2.55 1.28E-03 2.90 3.30E-03 2.85
160 x 160 2.28E-04 2.64 9.09E - 04 2.50 1.62E — 04 2.98 4.20E - 04 2.97
PZ
10 x 10 3.01E-02 7.32E-02 3.06E - 02 6.89E — 02
20 x 20 2.31E-03 3.71 1.28E-02 2.52 1.84E-03 4.06 4.73E - 03 3.86
40 x 40 1.99E - 04 3.53 1.77E-03 2.85 6.70E - 05 4.78 1.80E — 04 4.71
80 x 80 2.38E-05 3.07 2.25E-04 2.97 2.17E-06 4.95 5.89E-06 4.94
160 x 160 2.96E - 06 3.00 2.82E-05 3.00 6.85E-08 4.99 1.86E - 07 4.98
P3
10 x 10 3.96E-03 2.42E-02 5.93E-03 1.36E - 02
20 x 20 1.79E - 04 4.47 2.43E-03 3.32 6.05E-05 6.62 1.64E — 04 6.37
40 x 40 1.12E-05 4.00 1.60E - 04 3.92 3.75E-07 7.33 1.05E - 06 7.29
80 x 80 7.01E-07 3.99 9.95E-06 4.01 3.02E-09 6.96 7.68E - 09 7.10
160 x 160 4.38E - 08 4.00 6.21E-07 4.00 5.05E-11 5.90 1.12E-10 6.10

solution H), they have the same order of accuracy in L? and L>, and the latter one, which is much more
computationally expensive, does not give much better results than the former one, especially for the
component E, (see Table 7).
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Table 9

L? and L™ errors in H with LDF + Final Pro
Mesh Before post-processing After post-processing

L? error Order L™ error Order L? error Order L™ error Order

Pl
10 x 10 2.03E-01 4.62E-01 2.02E-01 4.41E-01
20 x 20 5.73E-02 1.82 1.42E-01 1.70 5.69E - 02 1.83 1.31E-01 1.75
40 x 40 9.77E-03 2.55 2.75E-02 2.37 9.55E-03 2.58 2.38E-02 245
80 x 80 1.39E-03 2.81 4.37E-03 2.65 1.28E-03 2.90 3.30E-03 2.85
160 x 160 2.12E-04 2.71 6.99E-04 2.64 1.62E - 04 2.98 4.20E - 04 2.97
PZ
10 x 10 2.96E - 02 6.89E - 02 3.07E-02 6.92E - 02
20 x 20 1.99E - 03 3.89 7.21E-03 3.25 1.84E-03 4.06 4.74E - 03 3.87
40 x 40 1.18E-04 4.07 7.78E - 04 3.21 6.70E - 05 4.78 1.81E-04 4.71
80 x 80 1.20E - 05 3.30 9.22E-05 3.08 2.17E-06 4.95 5.89E-06 4.94
160 x 160 1.46E - 06 3.04 1.14E-05 3.02 6.85E-08 4.98 1.86E - 07 4.98
P3
10 x 10 3.73E-03 1.66E — 02 5.94E - 03 1.37E-02
20 x 20 1.34E - 04 4.80 1.16E-03 3.84 6.05E-05 6.62 1.65E — 04 6.38
40 x 40 8.28E - 06 4.01 7.28E-05 3.99 3.73E-07 7.34 1.05E - 06 7.29
80 x 80 5.23E-07 3.99 4.60E — 06 3.99 2.65E—09 7.13 7.47E-09 7.14
160 x 160 3.28E-08 4.00 2.89E-07 3.99 3.05E-11 6.44 1.01E-10 6.21

Table 10

L? and L*® errors in H with GDF
Mesh Before post-processing After post-processing

L? error Order L*> error Order L? error Order L> error Order

Pl
10 x 10 1.94E - 01 4.46E - 01 1.94E - 01 4.23E-01
20 x 20 5.48E-02 1.82 1.37E-01 1.70 5.45E-02 1.83 1.25E-01 1.75
40 x 40 9.58E-03 2.52 2.70E -02 2.34 9.36E-03 2.54 2.33E-02 243
80 x 80 1.38E-03 2.79 4.35E-03 2.64 1.27E-03 2.88 3.28E-03 2.83
160 x 160 2.12E-04 2.70 6.99E - 04 2.64 1.62E - 04 2.97 4.20E - 04 2.97
PZ
10 x 10 3.74E-02 8.80E - 02 3.79E-02 7.88E - 02
20 x 20 1.76E - 03 441 6.61E—-03 3.73 1.60E - 03 4.57 4.12E-03 4.26
40 x 40 1.03E - 04 4.09 7.37TE-04 3.16 4.03E-05 5.31 1.11E-04 5.22
80 x 80 1.18E-05 3.13 9.12E-05 3.01 1.18E-06 5.10 3.21E-06 5.11
P3
10 x 10 5.25E-03 1.81E-02 7.20E-03 1.62E - 02
20 x 20 1.23E-04 5.42 1.01E-03 4.17 6.21E-05 6.86 1.72E - 04 6.55
40 x 40 7.96E - 06 3.95 6.99E - 05 3.85 4.82E-07 7.01 1.34E - 06 7.01
80 x 80 S.17E-07 3.94 4.54E - 06 3.94 4.60E — 09 6.71 1.42E - 08 6.56

3.4. Post-processing to enhance accuracy

In this section, we would like to see the accuracy of the three RKDG methods: using the locally di-
vergence-free polynomial bases, using the locally divergence-free polynomial bases with a projection to the
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Table 11

L? and L™ errors in E, with LDF + No Pro/+Final Pro
Mesh Before post-processing After post-processing

L? error Order L> error Order L? error Order L*> error Order

Pl
10 x 10 2.06E-01 4.82E-01 2.05E-01 445E-01
20 x 20 5.77E-02 1.84 1.47E-01 1.71 5.68E—-02 1.85 1.31E-01 1.77
40 x 40 9.99E-03 2.53 3.01E-02 2.29 9.54E-03 2.57 2.39E-02 2.45
80 x 80 1.49E-03 2.74 5.02E-03 2.58 1.28E-03 2.90 3.30E-03 2.85
160 x 160 2.52E-04 2.57 1.50E-03 1.74 1.62E — 04 2.98 4.20E - 04 2.97
PZ
10 x 10 2.93E-02 7.00E — 02 3.04E-02 6.87E—-02
20 x 20 2.04E-03 3.84 9.57TE-03 2.87 1.84E-03 4.05 4.73E-03 3.86
40 x 40 1.40E - 04 3.87 1.29E-03 2.89 6.71E-05 4.78 1.80E — 04 4.71
80 x 80 1.55E-05 3.17 1.63E-04 2.98 2.18E-06 4.95 5.89E-06 4.94
160 x 160 1.92E - 06 3.01 2.03E-05 3.00 6.86E - 08 4.99 1.86E - 07 498
P3
10 x 10 3.49E-03 1.62E-02 5.93E-03 1.36E-02
20 x 20 9.14E-05 5.25 1.22E-03 3.73 6.03E-05 6.62 1.64E — 04 6.38
40 x 40 4.99E - 06 4.20 7.03E-05 4.11 3.71E-07 7.34 1.05E-06 7.29
80 x 80 3.08E-07 4.02 4.31E-06 4.03 2.65E—09 7.13 7.45E-09 7.14
160 x 160 1.92E - 08 4.00 2.69E - 07 4.00 2.03E-11 7.03 5.53E-11 7.07

Table 12

L? and L™ errors in E, with GDF
Mesh Before post-processing After post-processing

L? error Order L™ error Order L? error Order L> error Order

Pl
10 x 10 1.98E-01 4.67E-01 1.96E - 01 427E-01
20 x 20 5.53E-02 1.84 1.43E-01 1.71 5.44E - 02 1.85 1.26E - 01 1.76
40 x 40 9.82E-03 2.49 2.96E - 02 2.27 9.35E-03 2.54 2.34E-02 243
80 x 80 1.49E - 03 2.72 5.00E-03 2.57 1.27E-03 2.88 3.28E-03 2.83
160 x 160 2.52E-04 2.56 1.51E-03 1.72 1.62E — 04 2.97 4.20E-04 2.97
PZ
10 x 10 3.78E-02 9.00E - 02 3.79E-02 7.90E - 02
20 x 20 1.87E-03 4.34 9.09E-03 3.31 1.60E — 03 4.57 4.12E-03 4.26
40 x 40 1.30E - 04 3.84 1.29E - 03 2.82 4.03E-05 5.31 1.10E - 04 5.22
80 x 80 1.54E - 05 3.08 1.63E-04 2.99 1.18E-06 5.10 321E-06 5.11
P3
10 x 10 5.35E-03 2.31E-02 7.20E-03 1.62E—-02
20 x 20 1.38E—-04 5.28 1.64E - 03 3.81 6.21E-05 6.86 1.72E-04 6.55
40 x 40 9.84E - 06 3.81 1.24E-04 3.72 4.82E-07 7.01 1.34E - 06 7.01
80 x 80 6.79E - 07 3.86 8.67E-06 3.84 4.46E - 09 6.76 1.37E-08 6.61

globally divergence-free space at the end, and using the globally divergence-free polynomial bases, on the
known higher-order convergence rates in negative-order norms. We use uniform meshes in this section for
the smooth solution and perform a local post-processing technique [10,21] to the numerical solutions of the
three RKDG methods mentioned above, to see if the accuracy can be enhanced from (k+1)th order to
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Table 13
L? and L* errors in H with LDF + No Pro
Mesh Before post-processing After post-processing
L? error Order L*> error Order L? error Order L error Order
Pl
10 x 10 3.64E-02 1.46E - 01 3.43E-02 5.97E-02
20 x 20 6.64E - 03 2.46 2.08E-02 2.81 7.64E - 04 5.49 4.37E-03 3.77
40 x 40 1.69E - 03 1.97 4.55E-03 2.19 2.96E - 04 1.37 7.92E - 04 2.46
80 x 80 4.34E - 04 1.96 1.19E-03 1.93 9.69E - 06 4.93 1.04E - 04 2.93
160 x 160 1.08E — 04 2.01 3.03E-04 1.98 1.58E-06 2.62 8.56E — 06 3.60
PZ
10 x 10 1.38E-02 7.18E-02 2.24E-02 4.76E - 02
20 x 20 1.54E - 03 3.16 6.71E—-03 342 1.I1IE-03 4.34 4.67E - 03 3.35
40 x 40 1.85E-04 3.06 1.53E-03 2.13 1.03E-04 3.43 4.27E - 04 3.45
80 x 80 1.32E-05 3.80 8.67E-05 4.15 3.74E - 06 4.78 1.89E - 05 4.50
160 x 160 1.65E - 06 3.06 1.20E - 05 2.85 3.40E - 08 6.78 4.87E-07 5.28
P3
10 x 10 8.05E-03 5. 71E-02 2.60E - 02 4.86E - 02
20 x 20 3.61E-04 4.48 2.17E-03 4.72 1.13E-03 4.52 6.13E-03 2.99
40 x 40 2.83E-05 3.68 2.49E - 04 3.13 2.38E-05 5.57 9.20E-05 6.06
80 x 80 1.15E-06 4.62 5.57E-06 5.48 9.46E-07 4.65 5.19E-06 4.15
160 x 160 4.50E - 08 4.68 331E-07 4.07 8.59E - 09 6.78 1.21E-07 5.42
Table 14
L? and L™ errors in H with LDF + Final Pro
Mesh Before post-processing After post-processing
L? error Order L> error Order L? error Order L> error Order
P]
10 x 10 2.78E-02 1.00E - 01 3.41E-02 5.67E-02
20 x 20 5.36E-03 2.37 1.33E-02 291 9.01E-04 5.24 4.82E - 03 3.56
40 x 40 1.55E-03 1.79 4.10E-03 1.70 2.99E-04 1.59 8.05E-04 2.58
80 x 80 4.16E - 04 1.90 1.07E-03 1.94 9.62E - 06 4.96 1.02E - 04 2.98
160 x 160 1.04E - 04 2.00 2.70E - 04 1.98 1.57E-06 2.61 8.61E-06 3.57
PZ
10 x 10 2.34E-02 9.19E-02 2.46E-02 4.97E - 02
20 x 20 1.40E - 03 4.06 4.17E-03 4.46 1.17E-03 4.40 4.91E-03 3.34
40 x 40 1.45E - 04 3.27 1.05E-03 1.99 1.06E — 04 3.46 4.34E - 04 3.50
80 x 80 6.98E - 06 4.38 3.79E-05 4.79 4.09E - 06 4.70 2.36E - 05 4.20
160 x 160 7.89E-07 3.14 5.02E-06 291 3.75E-08 6.77 5.45E-07 5.44
P3
10 x 10 6.23E-03 2.68E —02 2.61E-02 4.84E - 02
20 x 20 3.67E-04 4.08 1.64E - 03 4.03 1.1I8E-03 4.47 6.27E-03 2.95
40 x 40 2.58E-05 3.83 1.22E - 04 3.74 2.32E-05 5.67 8.72E-05 6.17
80 x 80 1.05E - 06 4.62 5.35E-06 4.52 9.36E - 07 4.63 5.09E - 06 4.10
160 x 160 3.37E-08 4.96 1.71E-07 4.96 9.60E - 09 6.61 1.27E-07 5.33

(2k+1)th order when P* elements are used. We clearly see from Tables 8-12 that (2k+1)th order accuracy is
achieved after the post-processing for all three cases. A careful inspection of Tables 8 and 9 reveals that
RKDG using locally divergence-free polynomial space, with or without projection at the end, gives almost
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Table 15

L? and L™ errors in H with GDF
Mesh Before post-processing After post-processing

L? error Order L> error Order L? error Order L*> error Order

Pl
10 x 10 2.63E-02 8.31E-02 3.36E-02 5.44E-02
20 x 20 5.59E-03 2.23 1.34E-02 2.63 1.79E-03 4.23 4.21E-03 3.69
40 x 40 1.56E - 03 1.84 4.12E-03 1.70 2.23E-04 3.00 4.97E - 04 3.08
80 x 80 4.16E — 04 1.91 1.07E-03 1.94 1.31E-05 4.09 1.37E - 04 1.86
160 x 160 1.04E - 04 2.00 2.70E - 04 1.99 1.51E-06 3.12 8.36E - 06 4.03
PZ
10 x 10 247E-02 8.97E-02 2.37E-02 4.88E—-02
20 x 20 3.13E-03 2.98 1.66E — 02 243 1.63E-03 3.86 5.18E-03 3.24
40 x 40 3.09E - 04 3.34 2.22E-03 291 1.64E — 04 3.32 7.45E - 04 2.80
80 x 80 7.46E — 06 5.37 5.14E-05 5.43 1.86E — 06 6.46 5.97E-06 6.96
160 x 160 7.84E - 07 3.25 S5.11E-06 3.33 6.08E - 09 8.26 3.41E-08 7.45
P3
10 x 10 1.48E-02 S.15E-02 2.59E-02 4.86E - 02
20 x 20 3.22E-03 2.20 9.21E-03 2.48 1.52E-03 4.09 6.61E—-03 2.88
40 x 40 341E-04 3.24 1.40E-03 2.72 9.23E-05 4.04 3.05E-04 4.44
80 x 80 3.10E-05 3.46 2.12E-04 2.72 1.04E - 05 3.15 5.52E-05 247
160 x 160 2.01E-06 3.95 1.626E - 05 3.71 6.10E-07 4.10 4.92E - 06 349

the same L2 and L™ error for H after post-processing, which in some cases, is smaller than the one from the
RKDG using globally divergence-free polynomial bases after post-processing. This seems also to be the
case for E..

Since this post-processing technique is based on the assumption of a (2k + 1)th order convergence rate in
the negative-order £ norm of the numerical solution, a successful enhancement after the post-processing to
(2k + 1)th order accuracy is an indication that the global projection to the divergence-free subspace applied
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10°
P2: 40*40

[IDiv H||

P2: 80*80

10 P3: 80*80

o T
N
(53]

50 75 100
Time

Fig. 1. The divergence of H against time ¢ for the singular solution.
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at the end of computation does not affect the high-order convergence rate in the negative-order norm. This

is not surprising since the projection involved is an L?-projection, which should not affect negative-order

norms.
The computational results for the smooth solution (3.1) and (3.2) can be summarized as follows:

1. The RKDG methods using the regular piecewise polynomial bases and the locally divergence-free piece-
wise polynomial bases give comparable L? and L™ errors, although the latter uses much fewer degrees of
freedom and gives smaller global divergence errors.

2. With the RKDG method using the locally divergence-free polynomial bases and the projection into the
globally divergence-free subspace at the end, we obtain smaller L* and L™ errors than before this projec-
tion. These errors are no worse than those obtained with the RKDG method using the globally diver-
gence-free polynomial space, which is much more computational expensive.

3. A post-processing of [10,21] after the global projection still recovers (2k + 1)th order accuracy, indicating
that the removal of the error in the divergence from the final numerical solution, neither increases (it
even decreases) the L2 and L™ errors, nor affects the faster convergence in the negative-order k£ norm.

1
0.9
08
0.7
0.6
05
04 P2: 80*80 with upwinding flux (2.6)
0.3
= P2: 80*80 with Lax-Friedrichs flux (2.7)
I 0.2
=}
o1 P3: 80* 80 with upwinding flux (2.6)
I P3: 80*80 with Lax-Friedrichs flux (2.7)
1 I 1 I I 1 I I 1 I I

Fig. 3. The edgewise divergence at ¢ = 100 with Vi ona 80 x 80 mesh. Twenty contours from 0 to 0.00014. Left: using the upwinding
flux (2.6); right: using the Lax—Friedrichs flux (2.7).
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3.5. The example with the singular solution

The singularity at ¢ = 0 propagates along two characteristics. We will look at the errors in the smooth
region not polluted by the crossing of characteristics from the singularity. The data here are computed at
t =0.4, in the unpolluted area {(x,y) : |cos(w(ax + By +1))| > 0.9}. See Tables 13-15. We use uniform
meshes here and look at the errors both before and after the post-processing. The results are very similar to
those obtained before for globally smooth solutions, when the global projection is not used or when it is
used only once at the end, indicating that the global projection to the divergence-free subspace, when used
at the end, has not polluted the errors globally. However, when the globally divergence-free polynomial
space is used for RKDG, we do observe some pollution, especially in the higher-order P case. This in-
dicates that it might not be a good idea to work in the globally divergence-free space for problem with
singular solutions, as functions in it are too global.

It is of particular interest to monitor the size of global divergence of the RKDG solution using the
locally divergence-free bases, before the projection is performed. If this error is under control, then the
projection has a chance of removing it without affecting accuracy otherwise. In Fig. 1, we plot the global
divergence error ||V - H||, , against time # when V,, is the solution space. We can see there is a decay trend of
the magnitude of the divergence, which is very nice for such singular solutions. We note that the Lax—
Friedrichs flux (2.7) has a better control on the jumps of the normal velocity across element interfaces,
which are the only source of numerical divergence error in our method. Thus, we compare in Fig. 2 the
global divergence error ||V - H||, , against time r when the upwinding flux (2.6) and the Lax—Friedrichs flux
(2.7) are used, respectively. We can see that the method with the Lax—Friedrichs flux has smaller numerical
divergence errors for the same mesh, but both methods have a decaying numerical divergence. Finally, we
plot in Fig. 3 the “edgewise” divergence fc [[H - n]|ds at = 100 for the methods with the upwinding flux
(2.6) (left) and with the Lax—Friedrichs flux (2.7) (right). We can see that the numerical divergence are
concentrated along the region where the solution is singular, and the results with the Lax—Friedrichs flux
have smaller numerical divergence and narrower numerical divergence regions.

4. Concluding remarks

Discontinuous Galerkin methods using a locally divergence-free polynomial bases seems to be very
effective for solving the Maxwell equations. After a final projection into a globally divergence-free subspace,
the numerical solution maintains (k + 1)th order accuracy in the L?- and L*-norms and (2k + 1)th order
accuracy after post-processing, and it is no worse than using the globally divergence-free polynomial bases.
This implies that the original solution without the final projection is already very accurate both in the L>-
and L>*-norms and in divergence error, for the removal of the latter does not increase the former.

Appendix A

In this section we describe a few key details related to the implementation of the L2-projection into the
globally divergence-free piecewise polynomial spaces introduced in Section 2. The basic idea is to choose
the normal components along the edges as degrees of freedom to make it easy to guarantee its continuity.

A.l1. The P! case

We first look at one rectangular element K with center (x;,y;), edge lengths Ax;, Ay;, and edges e;, 3, e3, e4
starting from the bottom and counting counter-clockwisely.
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A function u € W,ll restricted on this element K can be written as

: ] ]
I Av.X ¥ 0 0
= uk@k:ul( >+u2( : )+u3( )+u4( )+u5<_)
+“"< “24Ay, XY >+u7<ij(12Y2—l)>’

and the normal components along e;, k = 1,...,4 are a; + b\X, a» + b>Y, a3 + b3X, and a4 + bsY. Then,
the following relations:

a) + ay ary — dy as + a;
— — Uy =

uy = = 2ucAxi, uy = Ay, 0 T — 2u7 Ay,
po_batbe o ba—by bty bi—b
T2 0 T T 2aAxy 0 T 2 T 24Ay,

as well as the constraint
(Clz — (14)ij + (Clg — GI)AX,- = 0,

which comes from the fact that u is divergence-free in this cell, need to be satisfied. Thus, in this particular
cell, we can choose a;,b;, k,I = 1,...,4 as the degrees of freedom but with one constraint on a.

We now consider the whole domain @ and assume periodic boundary conditions for simplicity (this
assumption is not essential). For each edge e € &, we have one independent degree of freedom for ‘4’, called
b., so in total there are 2 x m X n (assuming there are m x n rectangular elements) degrees of freedom
corresponding to ‘b’.

As for ‘@’, the situation is a little bit more complicated. For each e € &, first an a, can be assigned.
However, in each element, there is one constraint for the four a.s related to this cell, so it finally ends up
that there are m x n+ 1 degrees of freedom for ‘@’ for partition 7, (notice it seems there should be
2 x m x n—m x n degrees of freedom, yet notice there are actually only m x n — 1 independent constraints
since the function is divergence-free in each cell). In principle, we can arbitrarily pick up a way to determine
on which m x n+ 1 edges there are degrees of freedom for ‘@’. .

Once the degrees of freedom are chosen, we can define the bases for W,l, simply by letting each degree
of freedom as 1 and the rest as 0. Notice a basis function related to each b, just has a support of two-
elements, yet the one related to ‘a’ is quite global; this reflects the global nature of the divergence-free
condition.

For those basis functions related to ‘»’, we can simply store the indices of the two supporting elements.
As for the basis functions related to ‘@’, since they might have global support, there is a problem on how to
store the information efficiently. We use the sparse matrix storage technique to record the support and the
corresponding coefficient of each basis function. The same technique is also used to store the projection
matrix due to its sparseness and large size. The projection matrix is of course symmetric positive definite,
which enables us to use the preconditioned conjugated gradient (CG) method to carry out the projection.
These techniques are also used for the P* cases described below with k > 1.

A.2. The P? case

The P? case has basically the same setting as the P! case.
Assuming u € W} has the following form on an element K:
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-] (55 old) () (1)
”6(%222(;”1)) +uv<ij(2f2A;“;{Y1)> +u8<12Y;_ 1> )
S et R (e

and the normal components along e;, k = 1,...,4 are a; + b X + ¢, (12X> — 1), ay + b, Y + ¢, (127* — 1),
as + b3X + c3(12X? — 1), and a4 + byY + ¢4 (12Y* — 1), then the following relations need to be satisfied

a +a a —a a a
u = 2 4_2M6Axi> U = 2 47 Uy = s ]—2u7Ay,-
Axi X

u_b2+b4 u_b4—b2 u_b1+b3 u_bl—b3

T2 T T Ay T 2 T 24Ay,
u_62—|—C4 u _C4—6‘2 u_Cl+C3 u _C]-C3

8§ — 2 1) 11 — A.x,' ) 9 — 2 ) 10 — Ay/

as well as the same constraint as in the P' case
(ar — as)Ay; + (a3 — a1)Ax; = 0.
Thus, we can choose a;, b;, ¢, i, j,k =1,...,4 as the degrees of freedom but with one constraint on a;.

Now, there are three groups of degrees of freedom, corresponding to ‘a’, ‘b, ‘c’. The basis functions
related to ‘@’ still represent the global nature of the divergence-free condition and might have very wide

support; those related to ‘b’ and ‘c’ are local, and each of them has a two element support. The dimension of
W;is 5 xmxn+1.

Notice that in P2, the ‘¢’ group basis functions have the same pattern of support as the ‘b’ group, so
basically we just need to store the support of the ‘@’ group and that of the ‘4’ group.

A.3. The P? case

Assuming u € Wfl has the following form on an element K:

i ) <1>+ AT EAN <0>+ (o>+ Ax(12X% — 1)
u= u =u u _ u u u _ u _
7T o) T cayy ) T o) T ) T R ) T —oaayxy

N —24Ax.XY N 1272 - 1 N ( 0 ) N Ax;(4X° — X)
u — u u _ u _ _
"\ Ay (1272 - 1) '\ o \12x? -1 U\ —ay 202 - 1)y

Ax;(12X% — 1) Y —AxX (1272 - 1) <2oy3 - 3Y> < 0 )
+ u3 + U4

+u _ _ +u _ _ _ _
T\ —ayx(2rr -1 2l Ay@ari-v) 0 204° — 3%

Ax;(80X* —24X2 + 1) —16Ax;(20Y° — 3Y)X
+ ujs 1 _ - | tus —4 = )
—16Ay;(20X° — 3X)Y Ay;(80Y* —24Y° + 1
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and the normal components along ¢,k = 1,...,4 are:
a +b1/\7+6‘1(12X2 — 1) +d1(20)23 — 3X)
ay + by Y 4 c(12Y* — 1) + d» (207 — 3Y),
as + biX 4 ¢3(12X% — 1) + d5(20X° — 3X),
as + b4Y+ C4(12Y2 — 1) + d4(20)73 — 3)7),

we then have the following relations:

a) + ag ay; — dy u _a3+a1

U = —2ugAx;, ur, = A 4 = 2u7Ay;,

uz = b -2Fb4 —2Axuy, u; = b;4_Axbi2 , Us = b ;b3 + 2Ayuyy,  us = b214_AjjS ;

u8:c2+c4, M12=c4_cz7 u():cl—i—(:g, M10=CI_C3,
2 Ax; 2 Ay;

M13:d2+d4, ulézua u14:d1+d3, Mlsidl_d3a
2 16Ax; 2 16Ay;

and also the same constraint as in the P! case
(ay — as)Ay; + (a3 — a))Ax; = 0.
It seems that we can now define four groups of basis functions related to ‘a’, ‘b’, ‘¢’ and ‘d’, just like in the

P!, P? cases. However, if we let all those a;, b, iy Cesdpy 1,7,k 1 =1,...,4 be zeros, the following will be left:
Uy = —ZAX,-MU, Us = 2Ay,-u11.

That is, we miss another ‘bubble’ basis function whose support is just a single element, and this basis
function does not come from the continuity of the normal component of the function u. This basis function
can be written as

Y 0 Ax(12)?2—1)_ Ax(12)?2—3)_
2au(g ) +2a(3 ) ¢ ( —AyX(127 - 1)) ( Ay (127 - 3>>
The rest is the same as in the P!, P> cases. The dimension of Wz is8xmxn+1.

As for even larger k in P*, similar processes can be designed. We would, however, like to remark on two
points: when £ is getting larger, the number of bubble basis functions will increase rapidly and functions in
Wﬁ will have much richer local structure within each element. Another thing we need pay attention to,
especially from the computational point of view, is that when k becomes larger, in order to let ‘a’ be the only
group which might have the global support, we need to figure out the right way to define the degrees of
freedom along each edge. In fact, in the rectangular partition, we can simply write the normal component of
a function as Zf:o wn;, where {ni}f:o are the orthogonal bases in one-dimensional P*. Then, {w,-}f:o are the
right degrees of freedom we are looking for.
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